2007 Vol. 9, No. 14 2689–2692

Preparation and Use of Enantioenriched Allenylsilanes for the Stereoselective Synthesis of Homopropargylic Ethers

Ryan A. Brawn and James S. Panek*

Department of Chemistry and Center for Chemical Methodology and Library Development, Metcalf Center for Science and Engineering, 590 Commonwealth Avenue, Boston University, Boston, Massachusetts 02215

panek@bu.edu

Received April 20, 2007

ABSTRACT

A convenient procedure for the synthesis of highly enantioenriched allenylsilanes by Johnson orthoester Claisen rearrangement of 1-silyl propargylic alcohols is described. Allenylsilanes are then used as carbon nucleophiles in three-component, Lewis acid mediated additions to in situ generated oxonium ions, resulting in enantioenriched homopropargylic ethers.

In recent years, allenes have emerged as an important functional group and have been used in a variety of organic transformations, including ionic additions,¹ cycloadditions,² cyclizations,³ and sp²—sp² and sp²—sp cross-coupling processes.⁴ Despite these important contributions, the chemistry of allenes remains underdeveloped. One important class of allenes that has proven to be useful is enantioenriched allenylstannanes, which have been used as carbon nucleophiles for the diastereo- and enantioselective synthesis of homopropargylic alcohols.⁵

As a complement to allenylstannane chemistry, an efficient synthesis of highly enantioenriched allenylsilanes is a desirable synthetic objective and a potentially useful contribution to the field. Like allenylstannanes, the related silanes can be used to synthesize homopropargylic alcohols. These reagents share the ability to convert axial chirality into central chirality in the resulting product, by addition to carbon—heteroatom π -bonds. Chiral allenylsilanes have been prepared using Fleming's S_N2' displacement strategy; the majority of the reports have used racemic reagents. The lack of general synthetic pathways to highly enantioenriched allenylsilanes may have hindered their development, and a convenient

⁽¹⁾ Ma, S. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 595–699.

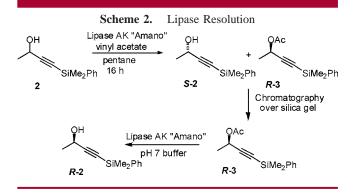
⁽²⁾ Murakami, M.; Matsuda, T. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004, pp 727–815. (b) Mandai, T. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 925–972.

^{(3) (}a) Tius, M. A. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 817–845. (b) Hashmi, A. S. K. *Angew. Chem., Int. Ed.* **2000**, *39*, 3590–3593. (c) Zimmer, R.; Reissig, H.-U. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 877–923.

⁽⁴⁾ Zimmer, R.; Reissig, H.-U. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 847–876.

^{(5) (}a) Marshall, J. A.; Wang, X.-J. J. Org. Chem. **1990**, 55, 6246–6248. (b) Marshall, J. A.; Wang, X.-J. J. Org. Chem. **1992**, 57, 1242–1252. (c) Marshall, J. A.; Perkins, J. J. Org. Chem. **1994**, 59, 3509–3511. (d) Marshall, J. A.; Perkins, J. F.; Wolf, M. A. J. Org. Chem. **1995**, 60, 5556–5559. (e) Marshall, J. A.; Palovich, M. R. J. Org. Chem. **1997**, 62, 6001–6005.

^{(6) (}a) Danheiser, R. L.; Carini, D. J. *J. Org. Chem.* **1980**, 45, 3925—3927. (b) Danheiser, R. L.; Carini, D. J.; Kwasigroch, C. A. *J. Org. Chem.* **1986**, 51, 3870—3878. (c) Marshall, J. A.; Maxson, K. *J. Org. Chem.* **2000**, 65, 630—633


^{(7) (}a) Fleming, I.; Terrett, N. K. *J. Organomet. Chem.* **1984**, 264, 99–118. (b) Fleming, I.; Newton, T. W. *J. Chem. Soc., Perkin Trans. 1* **1984**, 1805–1808.

stereoselective route to the synthesis of chiral allenylsilanes remains a desirable objective.

In that regard, a convenient, straightforward pathway has been developed for the preparation of highly enantioenriched allenylsilanes. We began the synthesis with commercially available 3-butyn-2-ol (1), which was deprotonated using *n*-butyllithium (2 equiv) to generate a dianion. C-Silylation with phenyldimethylchlorosilane resulted in alkyne 2, in high yield (86.3% after purification, >35 g scale). Selective C-silylation was observed, and the addition of lithium chloride resulted in nearly exclusive C-silylation. Trace amounts of bis-silylated product (<10%) were observed (¹H NMR analysis) in the absence of LiCl.⁸

Racemic propargylic alcohol **2** was subjected to a kinetic resolution using Amano lipase AK.⁹ The advantages of employing a biocatalytic resolution are several fold: the procedure is operationally simple; both enantiomers are obtained in high ee; the reagents are readily available and inexpensive; and the enzyme can be recycled for multiple uses without losing catalytic efficiency. The resolution afforded the enantioenriched propargylic alcohol (*S*)-**2** (49% yield, >95% ee) and acetate (*R*)-**3** (48% yield) after purification over silica gel. Acetate (*R*)-**2** was hydrolyzed when re-exposed to the lipase in pH 7 aqueous buffer to afford propargylic alcohol (*R*)-**3** (77% yield, >99% ee) after purification over silica gel.¹⁰

The individual propargylic alcohols (S)-2 and (R)-2 were then subjected to an orthoester Claisen rearrangement^{9b,11} to afford the enantioenriched allenylsilanes (R_a)-4 and (S_a)-4. The (S_a)-allene is obtained in 81% yield and 98% ee, and the complementary (R_a)-allene is obtained in 79% yield and 98% ee. R_a

The ee's of the allenes have been determined by HPLC and, as anticipated, are nearly identical to the ee's of the starting propargylic alcohols.¹³ The optimal conditions for the Claisen rearrangement were found using refluxing xylenes, while the use of toluene or other lower boiling hydrocarbon solvents resulted in low conversion. The absolute configuration of the allenylsilane is based on the concerted nature of the sigmatropic rearrangement using a pseudo-chair transition state, and accordingly, (R)-2 afforded (S_a) -4 and (S)-2 afforded (R_a) -4.¹⁴

Scheme 3. Johnson Orthoester Claisen Rearrangement

MeC(OMe)₃
cat. propionic acid

xylenes,
$$\Delta$$

MeC(OMe)₃
 CAL_{A}
 $CO_{2}Me$
 $CO_$

Having established a reliable protocol for the production of enantioenriched allenylsilanes, we used the silanes in three-component, Lewis acid catalyzed S_E2' reactions to form homopropargylic ethers. ¹⁵ By examining a series of Lewis acids that were likely to effect this reaction, we found that $BF_3 \bullet OEt_2$ was the most efficient catalyst. A solution of aldehyde and TMSOMe was exposed to $BF_3 \bullet OEt_2$, followed by addition of a solution of the allenylsilane. After performing a solvent screen, it was found that the optimal solvent for the reaction was acetonitrile (Table 1). ¹⁶

2690 Org. Lett., Vol. 9, No. 14, 2007

⁽⁸⁾ Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624–1654.

^{(9) (}a) Sparks, M. A.; Panek, J. S. *Tetrahedron Lett.* **1991**, *32*, 4085–4088. (b) For assignment of absolute configuration, see: Panek, J. S.; Clark, T. D. *J. Org. Chem.* **1992**, *57*, 4323–4326 and references found therein. (c) Lipase AK available from Amano Enzyme Inc.

⁽¹⁰⁾ HPLC analyses were performed using a ChiralCel OD-H column, isocratic 1% isopropanol/hexane eluent at 1mL/min flow rate.

^{(11) (}a) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. *J. Am. Chem. Soc.* **1970**, *92*, 741–743. (b) Mori, K.; Nukanda, T.; Ebata, T. *Tetrahedron* **1981**, *37*, 1343–1347.

⁽¹²⁾ For other examples of orthoester Claisen rearrangements to access allenes, see: (a) Allenylstannanes: Marshall, J. A.; Wang, X.-j. *J. Org. Chem.* **1991**, *56*, 3211–3213. (b) Racemic allenylsilanes: Yun, S.-J.; Chung, K. H.; Yu, B.-C. *J. Korean Chem. Soc.* **2004**, *48*, 439–442.

⁽¹³⁾ Ziegler, F. E. Acc. Chem Res. 1977, 10, 227–232. HPLC analyses were performed after conversion of the methyl ester to a carboxylic acid (LiOH in H₂O/MeOH) using a ChiralPak AD column, isocratic 1% isopropanol/hexane eluent at 1mL/min flow rate.

⁽¹⁴⁾ See Supporting Information for a detailed description.

⁽¹⁵⁾ Panek, J. S.; Yang, M.; Xu, F. J. Org. Chem. 1992, 57, 5790-5792.

⁽¹⁶⁾ No product was observed in THF, diethyl ether, or DMF; $-20~^{\circ}$ C was found to be the best temperature for the reaction, as lower temperatures resulted in an incomplete reaction, with recovered staring materials.

Table 1. Solvent Screen

solvent	temp	yield^a	$\mathrm{d}\mathbf{r}^b$
MeCN	−20 °C	78%	>20:1
MeNO_2	$-20~^{\circ}\mathrm{C}$	49%	>20:1
DCM	$-20~^{\circ}\mathrm{C}$	11%	>20:1
Toluene	$-20~^{\circ}\mathrm{C}$	<5%	>20:1
MeCN	$-45~^{\circ}\mathrm{C}$	44%	>20:1

 a Isolated yield after chromatographic purification over silica gel. b Diastereomeric ratios (dr) were determined by 1 H NMR analysis.

The observed syn stereochemistry can be explained by either an antiperiplanar or a synclinal transition state (Scheme 4), where the (R_a) -allenylsilane adds to the Re

Scheme 4. Transition State Models

MeO₂C

Me

H

PhMe

R

MeO₂C

SiMe

PhMe

Sime

Ph

Antiperiplanar

Transition State

Transition State

Transition State

Models

QR

CO

Me

R

Me

Observed product

(Syn)

face of the oxonium ion. While either transition state will result in the observed stereochemistry, the antiperiplanar transition state, where the interaction between the R group on the oxonium ion and the methyl on the allene is minimized, may be the best illustration of this reaction.

Aromatic aldehydes afforded the highest yields and selectivities in the three-component reactions using TMSOMe as the oxonium ion precursor (Table 2, entries 1–6), with yields as high as 78%, and a single diastereomer observed for many of the systems. Branched aliphatic aldehydes (entries 8 and 9) also gave the homopropargylic ethers in high selectivity, albeit in moderate yield. Straight chain aliphatic systems typically gave low yields and selectivities (entries 10 and 11). Thiophenecarboxaldehyde (entry 7), a heteroaromatic system, showed reactivity and good yield (54%), but the diastereoselectivity was low (2.7: 1).

More complex trimethylsilyl ethers were also effective in generating oxonium ions for these reactions (Table 3). These include primary allylic and benzylic ethers (entries 1–6) and

Table 2. Three-Component Reactions with TMSOMe

PhMe₂Si OMe
$$\frac{R}{BF_3 \cdot OEt_2, MeCN, -20 \cdot C}$$
 R

OMe

Figure 6

	(Na)			5
entry	/ aldehyde	yield ^a	dr ^b	product
1	2,5-Dimethoxybenzaldehyde	69%	>20:1	OMe OMe CO ₂ Me 5a
2	2,3-Dimethoxybenzaldehyde	61%	Me 10:1	5b
3	Benzaldehyde	54%	6:1	5c
4	p-Tolualdehyde	49%	>20:1	QMe CO ₂ Me
5	2-Bromobenzaldehyde	78%	>20:1	Br QMe CO ₂ Me
6	2-Nitrobenzaldehyde	54%	>20:1	NO ₂ OMe CO ₂ Me
7	2-Thiophenecarboxaldehyde	54%	2.7:1	OMe CO ₂ Me
8	Cyclohexanecarboxaldehyde	45%	>20:1	QMe CO ₂ Me
9	Isobutyraldehyde	42%	>20:1	QMe CO ₂ Me
10	Valeraldehyde	43%	1.8:1	QMe CO ₂ Me
11	Hydrocinnamaldehyde	43%	2.1:1 [OMe CO ₂ Me

^a Isolated yields reported as a diastereomeric mixture after purification over silica gel. ^b Diastereomeric ratios (dr) were determined by ¹H NMR analysis.

select secondary ethers (entries 7-10). The latter cases are illustrative of examples of double stereodifferentiation, where the magnitude of diastereoselectivity is either enhanced (matched cases) or attenuated (mismatched cases). In general, the yields for these reactions were similar to those using TMSOMe, but the diastereoselectivities tended to be slightly lower.

In conclusion, an efficient procedure for the preparation of highly enantioenriched allenylsilanes (>97% ee) with high yields on a multigram scale is reported. The allenylsilanes were used as carbon nucleophiles in three-component, Lewis acid catalyzed additions to in situ generated oxonium ions for the asymmetric synthesis of a range of structurally diverse homopropargylic ethers. The use of these reagents in complex molecule synthesis will be reported at a later time.

Org. Lett., Vol. 9, No. 14, 2007

Table 3. Three-Component Reactions with Other TMS Ethers

^a Isolated yields reported as a diastereomeric mixture after purification over silica gel. ^b Diastereomeric ratios (dr) were determined by ¹H NMR analysis.

SiMe₂Ph 64%

SiMe₂Ph 49%

(S)

QTMS

(R)

15:1

10:1

Acknowledgment. Financial support was obtained from NIH CA 53604. J.S.P. is grateful to Amgen, Johnson & Johnson, Merck Co., Novartis, Pfizer, and GSK for financial support. The authors are grateful to Prof. Scott E. Schaus, Dr. Sarathy Kesavan, and Jason Lowe for helpful discussions.

2-Bromobenzaldehyde

2-Bromobenzaldehyde

9

10

Supporting Information Available: Experimental details and selected spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

CO₂Me

CO₂Me

SiMe₂Ph

OL070936D

2692 Org. Lett., Vol. 9, No. 14, 2007